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Mode purity measurement is crucial for various applications utilizing few-mode fibers and related devices. In this
paper, we propose a simple and accurate method for measuring the mode purity of the output optical field in few-
mode ring-core fibers (RCFs). Mode purity can be calculated solely from the outgoing intensity distribution with
high precision. This method is theoretically capable of measuring the mode purity of RCFs that support orbital
angular momentum modes with an infinite number of azimuthal orders and has strong applicability to various
RCF types and image qualities simultaneously. We demonstrate our approach numerically and verify it exper-
imentally in a few-mode RCF supporting four (five) mode groups at 1550 (1310) nm. A polarization test method
is proposed to verify its accuracy. We believe that this straightforward and cost-effective characterization method
for RCFs and RCF-based devices can promote the development of mode-division multiplexing technology and its
applications. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.494864

1. INTRODUCTION

Orbital angular momentum (OAM) beams are characterized by
a spiral wavefront and are widely used in high-capacity com-
munication [1–3], optical metrology [4], optical tweezers
[5,6], and data storage [7,8]. As cylindrical waveguides, few-
mode fibers (FMFs) serve as a natural container for OAM
modes. In an ideal OAM fiber, each OAM mode is orthogonal
and able to carry independent information [9–11], which sig-
nificantly increases the communication channel capacity or the
degrees of freedom for multi-parameter sensing applications.
However, the severe unpredictability of inter-mode coupling
in actual fibers poses a significant challenge, hindering the reli-
ability of using each OAM mode as a controllable unit and
limiting the application of FMFs in various fields. Compared
to conventional FMFs, few-mode ring core fibers (RCFs) are
better suited for the stable propagation of OAM modes due
to its ring-shaped mode field distribution [2,12,13]. RCFs have
also been demonstrated to achieve weak coupling between
higher-order modes (HOMs) and reduce the emergence of
radial HOMs [14,15]. These advantages increase the capacity
of OAM multiplexing communication systems and reduce the
complexity of signal processing.

In communication and other applications based on RCFs, it
is crucial to design FMFs with lower cross talk as well as
to design devices with more efficient mode conversion and

multiplexing capabilities [14]. This stimulates the demand for
performance characterization of these FMFs and devices, one
key issue being the purity measurement of the spatial modes
actually transmitted in the fiber. For optical fibers, high-
precision purity measurement methods mean accurate charac-
terization of inter-mode cross talk [15,16], which can reflect the
feasibility of fiber design methods and may reveal more details
about the physical mechanism of inter-mode coupling, thereby
pointing to paths for further suppression of inter-mode cou-
pling. For OAM spatial [17–19] and all-fiber [20–22] devices,
experimental measurements of optical field purity can provide
guidance for device development and evaluate device perfor-
mance in application, as pure mode sources are important
for reducing system complexity. In addition to characterizing
the performance of fibers and fiber devices, simple purity mea-
surement methods can also provide new ideas for compensating
for inter-mode coupling, to solve the dilemma of FMFs in dif-
ferent fields, especially when combined with fiber transmission
matrix measurement and inversion [23,24].

In principle, measuring mode purity requires determining
not only the major mode component in FMFs or FMF-based
devices but also all possible other mode components.
Traditionally, researchers determine the main component of
an unknown optical field by examining the shape of the mode
pattern or interferogram [25,26]. In the mode pattern, modes
with different azimuthal orders exhibit varying numbers of
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lobes. In the interferogram, they exhibit different spiral or fork
wire patterns. However, if the mode is not pure, the mode pat-
tern and interferogram are complex, and determining each
mode component to calculate the purity of the main compo-
nent remains challenging. This problem is often referred to as
the measurement of OAM spectrum or mode decomposition.
To solve this problem, various methods based on diffraction,
coordinate transformation, and interference have been pro-
posed [18,19,23,27–35]. However, when applied to the mea-
surement of mode purity of RCF-based devices, these methods
face some challenges.

The methods based on diffraction [18,27] and coordinate
transformation [19,28,29] principle usually require a spatial
light modulator (SLM) and complex experimental configura-
tion and cannot be simply adapted to the purity measurement
of HOMs in ring core fibers. The fundamental mode in ring
core fibers is doughnut shaped in the near-field condition, and
has quite different mode characteristics from the intrinsic
fundamental mode in free space, which further increases the
complexity of the actual configuration. Since most mode con-
verters use the fundamental mode as the source, it is usually a
non-negligible impurity that should be measured simply and
accurately.

The methods based on the interference principle can be
divided into three categories. The first category utilizes the
different propagation constants of different modes, such as the
spatially and spectrally resolved imaging method [30], swept-
wavelength interferometry measurement [16], and vector
network analyzer (VNA) measurement [36]. These methods
are general and useful for characterizing fibers with an un-
known structure, but their application is limited by the require-
ment for expensive tunable lasers or VNAs. Additionally, these
methods require long optical fibers to generate sufficient group
delay between different modes and cannot distinguish degen-
erate OAMmodes with similar propagation constants. The sec-
ond category takes advantage of the principle that different
mode combinations result in different intensity distributions
at the fiber output [23,31–33,37]. These methods do not re-
quire complex equipment and can directly measure the mode
components using numerical algorithms, indicating strong
applicability. However, the number of modes that can be re-
solved by these methods is limited due to their sensitivity to
noise and initial value of iteration or dependency on long-term
neural network training. As a result, it is challenging to apply
them to purity measurements in RCFs with a large number of

modes. In previous experimental reports, the highest azimuthal
order of the modes supported by FMFs is only 3 [23]. The
third category requires a reference beam to obtain the phase
distribution of the output optical field and calculates all mode
components using the mode orthonormal property [34,35,38].
These methods require accurate alignment of the optical path
and interference stability for in situ measurement. However, in
practical applications of FMFs, achieving phase stability can
sometimes be difficult to attain.

In this study, we propose a straightforward and precise tech-
nique to measure the mode purity of the output optical field in
RCFs. We establish an equation that links the intensity distri-
bution to the mode components. Once the main component of
the optical field is known, the amplitude of each degenerate
mode can be obtained by measuring the output intensity dis-
tribution once, enabling the calculation of mode purity. To
verify the accuracy and effectiveness of this technique, we pro-
pose a simple polarization test method that uses only a polarizer
to verify if each component is correctly recovered at once. We
demonstrate our approach numerically and verify it experimen-
tally in a few-mode RCF supporting four (five) mode groups
(MGs) at 1550 (1310) nm. All simulation and experimental
results confirm the applicability and accuracy of our method.
The proposed method has the advantages of simple equipment,
easy implementation, high accuracy, and noise resistance. Most
importantly, the performance of this method will hardly de-
crease as the number of fiber modes increases, so theoretically
it can be used to measure the purity of RCFs that support
OAM modes with an infinite number of azimuthal orders.

To better highlight the advantages and innovations of the
proposed technology, we compare it with several state-of-
the-art techniques based on similar principles, specifically,
the second and third categories of methods based on the inter-
ference principle. The comparison is shown in Table 1. The
phase measurement methods allow for the analysis of a suffi-
cient number of modes for the ring core fibers, but they require
reference light, precise optical alignment, and interference sta-
bility, which is not conducive to on-site measurements in prac-
tical applications. In addition, for some complex active devices
such as pulsed lasers [40,41], obtaining a reference beam would
take more experimental effort. Compared to other intensity-
only measurement methods, our approach only requires infor-
mation about the main mode component. It does not need any
neural network training but can achieve mode purity measure-
ments of ring core fibers with large mode numbers in practical

Table 1. Comparison with the State-of-the-Art Methodsa

Method
Reference
Beam Training

Main Component
Information

Lmax in
Simulation

Lmax in
Experiments

SNR Requirement
(Lmax � 3) References

Coaxial interference Y N N — 8 — [35]
Off-axis interference Y N N — >10 — [34,39]
Neural network N Y N ∼6 3 — [23]
Matrix operation N N N ∼8 2 >33 dB [31,33]
This paper N N Y ⩾7 4 ∼5 dB —

aLmax, the highest azimuthal order of modes; SNR, signal-to-noise ratio; Y, there is a requirement for the condition; N, there is no requirement for
the condition.
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noise level. Therefore, the proposed technique can be a good
candidate for characterizing and evaluating the performance of
RCFs and RCF-based active and passive devices.

2. THEORY AND SIMULATION

A. Principle of Purity Measurement
To accurately measure the mode purity of the output optical
field in RCFs, it is crucial to understand their mode field char-
acteristics. In this study, we used a specific RCF that supports
four MGs at a wavelength of 1550 nm as an example. This fiber
was designed and fabricated to minimize inter-MG coupling
and has been demonstrated to enable the implementation of
OAM communication over a distance of 100 km [42,43]. The
relative refractive index difference (Δn) of the fiber core is
shown in Fig. 1(a). The fiber cladding diameter is 125 μm, and
the ring core inner and outer radii are 3.75 μm and 8.25 μm,
respectively. The ring core can also be seen in the cross-section
image of the RCF captured by a microscope shown in Fig. 1(d).
The maximum Δn in the refractive index profile (RIP) is equal
to 0.008. In order to decrease micro-perturbation-induced
inter-MG coupling, two notches are introduced in the RIP. For
the first one from 3.75 to 4.6 μm, Δn � 0.0065. For the sec-
ond one from 5.4 to 6.8 μm, Δn � 0.0053. Using the finite
element method with commercial software COMSOL, we cal-
culated the intensity and phase distribution of each OAM
mode at 1550 nm, as depicted in Fig. 1(b). The four MGs have
different azimuthal orders: zeroth order (OAM0), first order
(OAM�1), second order (OAM�2), and third order (OAM�3).
Each fiber mode in Fig. 1(b) further has two orthogonal polari-
zation states (x- and y-polarized states). Additionally, modes
within the same MG share the same intensity distribution
and radial field function (RFF). Figure 1(c) shows the normal-
ized RFFs Frjl j�r� with different azimuthal orders.

Compared to conventional FMFs, where the radial field
distribution of modes is dominated by the Bessel function
and Laguerre Gaussian function, the RCF exhibits a distinct
feature in which each Fr jl j�r� is similar as shown in Fig. 1(c),
indicating highly overlapping mode field distributions for
each mode. Removing the two notches designed to decrease

micro-perturbation-induced inter-MG coupling does not sig-
nificantly alter the RFFs [dotted lines in Figs. 1(a) and 1(c)],
suggesting that the radial field distribution is primarily caused
by the high refractive index region in the RIP and is almost
unaffected by other design factors. Although our simulation
and experimental discussions focus on this particular fiber,
our findings are applicable to all types of RCFs with simi-
lar RFFs.

In the following, we will focus on one polarization state, for
example the x-polarized state. However, the analysis can easily
be extended to the full vector field by applying the same
method to both orthogonal polarization components. The op-
tical field in the fiber can be expressed as

EL�r, θ� �
XL
l�−L

ρl · φl �r, θ� �
XL
l�−L

Al eiαl · Fr jl j�r�eilθ

�
XL
l�−L

Cl �r�eiαl eilθ, (1)

where Cl �r� � AlFr jl j�r�, r and θ are the radius and azimuth
coordinates, φl �r, θ� are the electric fields of OAMmodes, l are
the azimuthal orders (L is the highest order), ρl � Al eiαl are
complex mode coefficients representing amplitudes and phases
of the corresponding modes, and Fr jl j are the RFF of modes.

It is worth noting that the OAM modes here are not only
the specific modes in the fiber, but also one of the three mode
bases in weak-guiding FMFs. The remaining two mode bases
are linear polarization (LP) modes and cylindrical vector (CV)
modes, respectively. These three mode bases are related by a
complete transformation relationship [44,45], so that once
the amplitudes and phases of each mode in the OAM mode
base are fully characterized, the amplitudes and phases of each
mode in the LP and CV mode bases can be obtained immedi-
ately via the transformation relationship, and vice versa.

To measure the mode purity, we need to determine the am-
plitudes of each OAM mode from the intensity distribution of
the outgoing light. In the near-field condition, the mathemati-
cal expression for the intensity distribution is given by Eq. (2):

Fig. 1. Refractive index distribution and mode characteristics of the RCF used for demonstration. (a) Refractive index profile of the RCF. (b) The
intensity distribution and phase distribution of each OAMmode. (c) The radial field functions of OAMmodes with different azimuthal orders. The
actual length range is consistent with (a). (d) The cross-section image of the RCF captured by a microscope.
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IL�r, θ� � jEL�r, θ�j2
� ΣL

l�−LC
2
l �r� � Σ2L

Δl�1Σ
L
l�−L�Δl2Cl �r�Cl−Δl �r�

× cos�Δl · θ� �αl − αl−Δl ��, (2)

where Δl � jl 2 − l1j�Δl � 1, 2,…, 2L − 1, 2L�.
If a certain radius r � r0 is chosen, IL�r, θ� is reduced to an

azimuthal sampling one-dimensional sequence:

IL�r0,θ�
�ΣL

l�−LC
2
l �r0�

�Σ2L
Δl�1f�ΣL

l�−L�Δl2Cl �r0�Cl−Δl �r0�cos�αl −αl−Δl ��cos�Δl ·θ�
−�ΣL

l�−L�Δl2Cl �r0�Cl−Δl �r0�sin�αl −αl−Δl ��sin�Δl ·θ�g: (3)

According to a simple correspondence with the standard ex-
pansion of the Fourier series, the real and imaginary parts of the
first 2L� 1 Fourier coefficients can be formulated as an equa-
tion group:8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

f 0 � ΣL
l�−LC

2
l �r0�

real�f 1� � ΣL
l�−L�12ClCl−1 cos�αl − αl−1�

imag�f 1� � ΣL
l�−L�12ClCl−1 sin�αl − αl−1�

…

real�f 2L−1� � ΣL
l�L−12ClCl−2L�1 cos�αl − αl−�2L−1��

imag�f 2L−1� � ΣL
l�L−12ClCl−2L�1 sin�αl − αl−�2L−1��

real�f 2L� � 2CLC−L cos�αL − α−L�
imag�f 2L� � 2CLC−L sin�αL − α−L�

α0 � 0

: (4)

Thus, by taking an azimuthal sampling sequence and apply-
ing the fast Fourier transform (FFT) algorithm to obtain the
corresponding Fourier coefficients, we can establish an equa-
tion group as described by Eq. (4). If the equation group is

solved correctly and the RFF is known, the amplitudes of each
mode can be restored through Al � Cl �r�∕Fr jl j�r�, and the
power of each mode can be measured. Then, we can calculate
the purity of the concerned mode. For RCFs, the Fr jl j�r� of
each mode is close, so we can assume that the RFFs of each
mode at r0 are equal, which will only introduce a small error
in the recovery of amplitudes. The similarity of different RFFs
in RCFs is due to each mode contributing similar intensity at a
single radius, allowing the power of the whole mode to be
evaluated by directly sampling a certain radius.

Equation (4) represents a typical non-linear equation, which
is solvable but has multiple solutions. However, it has strict
analytic solutions only in special cases, such as when the optical
field is one of the pure OAM modes. To demonstrate this, we
present an example of a pure OAM�3 and show its intensity
distribution in the first row of Fig. 2(a). The intensity is uni-
formly distributed in the angular direction, resulting in a
straight line for the azimuthal sampling sequence IL�r0, θ�,
as shown in Fig. 2(b). Consequently, there is only a DC value
in the Fourier spectrum, corresponding to f 0 in the equation
group Eq. (4). At this point, there are only four solutions to the
equation group. The intensity distributions and amplitude
spectra corresponding to these four solutions can be seen in
Fig. 2(a). They correspond to pure third-order, second-order,
first-order OAM modes, and the fundamental mode, respec-
tively. (Note that OAMmodes with positive and negative topo-
logical charges have identical intensity distributions, so they are
regarded as the same solution.)

In theory, it is possible to distinguish these four solutions
only from the intensity distribution because pure modes with
different azimuthal orders have different radial field structures.
The correlation between the preset image and the image cor-
responding to the correct solution is highest, nearly 1 [Sol.1 in
Fig. 2(a)]. However, other solutions may also have high corre-
lations with the preset image [such as Sol.2 in Fig. 2(a)].
Therefore, precise calibration of all pure modes is required
to distinguish these solutions experimentally. In other words,
a priori information about the radial structures of the OAM

Fig. 2. Demonstration for solving the equation group in the pure-mode situation. (a) Intensity patterns, interference patterns, and amplitude
spectrum of the preset pure third-order OAMmode and four analytic solutions of Eq. (4). (b) The intensity of the azimuthal sampling sequence, the
real part and imaginary part of its Fourier spectrum.
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modes is necessary. However, such information is difficult to
obtain due to the similar radial field distribution of each mode
in the RCF.

Fortunately, researchers can often obtain simple phase infor-
mation using a reference beam, and the interferograms of differ-
ent solutions are entirely distinct. For OAM modes, spiral and
fork wire interference patterns are commonly used. Here, we
use fork wire interference patterns as an example because they
have higher and more easily adjusted resolution. We simulated
the fork wire interferograms corresponding to the four solu-
tions, as shown in the second row of Fig. 2(a). The interference
fringe differences above and below the center point can reflect
their azimuthal order. It can be observed that only the correct
solution has the same interference fringe difference as the preset
one. This method avoids the potentially required calibration
process of pure modes. In other words, if we experimentally
observe a uniform ring and its interferogram is a third-order
fork wire pattern, we can directly consider it to be a pure
third-order OAM mode.

If a pure OAM mode is mixed with other mode compo-
nents, the preset intensity distribution may no longer be a uni-
form ring, as shown in Fig. 3(a) where the purity of OAM�3 is
90%. As illustrated in Fig. 3(b), the intensity of the azimuthal
sampling sequence is no longer a straight line, and obtaining an
analytic solution to the equation group Eq. (4) becomes diffi-
cult. However, the least squares algorithm [46] can effectively
solve this type of problem. By using the four pure modes as
initial values of the iteration, four numerical solutions can
be calculated. The reconstructed intensity distribution, inter-
ferograms, and amplitude spectra corresponding to these four
solutions are shown in Fig. 3(a). It can be observed that when
the pure OAM�3 is chosen as the initial value, the result con-
verges to the correct solution. The interferogram still displays
the shape of a third-order fork wire, even though the singularity
splitting phenomenon occurs [47]. This occurs because the
small power of other modes does not significantly alter the over-
all phase structure of OAM�3. Hence, once we identify the

main component using the interferogram, we can choose
the corresponding pure mode as the initial value of the least
squares algorithm to obtain the correct solution directly, and
accurately recover the amplitudes of all OAM modes.

In addition to the interference method, determining the
main component of a completely unknown beam can also
be achieved by examining the number of lobes in the intensity
distribution. For example, the superposition of modes within a
mode group with an azimuthal order of L will form a pattern
with 2L petals, as modes with different azimuthal orders have
varying numbers of azimuth nodes. This situation is equivalent
to a superposition of two OAMmodes in the same mode group
and is therefore included in our simulation discussion below
instead of being demonstrated separately. Moreover, in some
fiber characterization applications, such as measuring mode-
dependent cross talk, the main component is naturally known.

We have summarized the method of mode purity measure-
ment. Once the main component of the optical field is iden-
tified, the azimuthal sampling sequence IL�r0, θ� can be
obtained, and FFT can be applied to it. Then, we can establish
the equation group Eq. (4) and solve it using the least squares
algorithm. The initial value of iteration can be fixed at the pure
OAM mode corresponding to the main component. The sol-
ution to the equation group is the amplitudes of each mode,
from which the purity of the main component can be accu-
rately calculated.

B. Accuracy and Application Scope of the Proposed
Method
To discuss the accuracy and application scope of this mode
purity measurement method, we calculate the error of ampli-
tudes of each mode [31,33] by

ϵA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP �Arec

l − Atrue
l �2P �Atrue

l �2

s
, (5)

where Atrue
l and Arec

l present the true and recovered amplitudes,
respectively. (l � 1, 2,…, 2L, 2L� 1, if the highest azimuthal

Fig. 3. Demonstration for solving the equation group in the impure-mode situation. (a) Intensity patterns, interference patterns, and amplitude
spectrum of the preset pure third-order OAM mode and four numerical solutions of Eq. (4). (b) The intensity of the azimuthal sampling sequence,
the real part and imaginary part of its Fourier spectrum.
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order is L.) A smaller error implies better amplitude recovery.
We consider an error of less than 0.1 as acceptable. If ϵA is less
than 0.1, the amplitudes can be correctly recovered with an
accuracy of 0.1. As the number of modes supported by
RCFs continues to increase, we calculate the OAM modes that
this RCF supports at different wavelengths to encompass more
azimuthal HOMs in the analysis. At 1310 nm, 1200 nm,
1050 nm, and 960 nm wavelengths, the highest azimuthal or-
der of the OAM modes that the fiber sustains is from 4 to 7,
respectively, and the RFFs of each mode are still close. Figure 4
displays some of the simulation results, where the mode group
purity is fixed at 90%. In Figs. 4(a1)–4(a3), a single OAM
mode occupies most of the power, and thus fork wires corre-
sponding to the azimuthal order of the OAM mode appear in
the interferogram. When the initial value of iteration is chosen
as the corresponding pure modes, the amplitudes can be recov-
ered with an accuracy of 0.02, even if the highest azimuthal
order is 7 in Fig. 4(a3). In Figs. 4(b1)–4(b3), the mode purity
of a single OAM mode has decreased to 60%–70%, but the
mode group purity is as high as 90%, so the intensity pattern
exhibits an asymmetrical pattern with 2L petals. Then the ini-
tial value of iteration can also be chosen as the pure OAMmode
whose azimuthal order is L. In this case, the accuracy is slightly
reduced, but the amplitudes can be correctly recovered with an
accuracy of 0.1. This implies that our algorithm is not only
superior in recovering the amplitude of a single OAM mode
with higher purity but also in correctly retrieving amplitudes

when the mode purity of a single OAM mode is low, but
the mode group purity is high.

When the highest azimuthal order of the modes supported
by this fiber ranges from 3 to 7, we varied the purity for each
OAM mode and conducted 1000 random samples at each
purity level. The power of the modes was randomly assigned
except for the main component. We considered the average
value of errors as the accuracy of the proposed algorithm. The
results are presented in Fig. 5. We observe that the mode purity
has an impact on the accuracy of the algorithm, and there are
slight differences in the errors when different OAM modes
serve as the main mode component. This is because mode
purity affects the reliability of using corresponding pure mode
as the initial value for iteration, while the main mode compo-
nent affects the condition number of the least-squares coeffi-
cient matrix [46]. But for most HOMs, even if the mode
purity is as low as 65%, the algorithm can recover the ampli-
tudes of each mode with an accuracy of 0.1. When the purity is
lower, it becomes more difficult to converge to the correct sol-
ution. However, accurate purity measurement for OAMmodes
with more than 60%–75% purity is sufficient for many appli-
cations. If the purity is too low, neither device purity measure-
ments nor mode-dependent cross-talk measurements are of
much significance for OAM devices. Notably, the accuracy
hardly decreases as the number of modes supported by the fiber
increases, which presents a completely different characteristic
from the previous similar intensity-only mode decomposition

Fig. 4. Different simulation results of purity measurement for impure modes. (a1)–(a3) Intensity patterns, interference patterns, preset and
recovered amplitude spectra. (b1)–(b3) Intensity patterns, preset and recovered amplitude spectra, and the corresponding initial value of iteration.
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methods [31,32,48]. The fact highlights the superiority of
introducing prior information of the main component to mea-
sure the mode purity.

In addition to mode purity, the accuracy of the proposed
purity measurement method is also influenced by the noise
level and the size of input images. To investigate the impact
of noise, we fixed the purity of each mode at 70% and added
Gaussian white noise to the input image when the highest azi-
muthal order is 5. The change of ϵA under different signal-
to-noise ratio (SNR) conditions is shown in Fig. 6(a), which
demonstrates that higher SNR leads to more accurate ampli-
tude recovery. Nonetheless, our method exhibits excellent noise
robustness as the amplitudes can still be recovered with an ac-
curacy of 0.2 even if the SNR is as low as 5 dB. To further
evaluate the effect of image size on the accuracy of purity mea-
surement, we kept the SNR at 15 dB and varied the resolution
of the input image. The results, as shown in Fig. 6(b), indicate
that higher image resolution leads to higher accuracy of purity
measurement. We attribute this to the fact that the closer the
azimuthal sampling sequence I trueL �r0, θ� is to a circle, the more
accurate Fourier coefficients are obtained and put into the

equation group Eq. (4). Conversely, if the resolution of the im-
age is as low as 100 × 100 pixels, the measurement accuracy
will be significantly reduced. Therefore, it is recommended
to use high-resolution cameras or image resolution enhance-
ment techniques for higher accuracy.

In addition to the factors mentioned above that can affect
the measurement error, another important factor to consider is
the assumption that the RFFs of different modes are similar
when applying the method to different types of ring core fibers.
This assumption is based on the fact that the radial field dis-
tributions of each mode in the RCF are very similar due to the
high refractive index ring introduced in the fiber. In this part,
we examine the application of our method to different types of
RCFs through simulation. To measure the similarity of the
RFFs, we introduce an index called ΔFr . To obtain a sampling
sequence with a high SNR, we usually choose the sampling
radius r0 where the intensity of the main component is the
highest, which corresponds to the peak of F rmain

�r�. As the azi-
muthal order difference between two modes increases,
the difference between their RFFs also increases, resulting in
the greatest difference between the RFFs of the main

Fig. 5. Accuracy corresponding to mode purity when the fiber supports different numbers of modes. The highest azimuthal order of modes
in (a)–(e) is from 3 to 7.

Fig. 6. Accuracy corresponding to the noise level and the size of input images. (a) The accuracy corresponding to the noise level. (b) The accuracy
corresponding to the size of input images.
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component and the fundamental mode. In the radius r0, the
RFF of the fundamental mode is marked as F r0�r0�. Therefore,
we calculate the difference between Frmain

�r0� and F r0�r0� to
access the similarity of the RFFs that we care about, as follows:

ΔF r �
���� F rmain

�r0�
F r0�r0�

− 1

����, (6)

which is a large value when the RFFs are from a conventional
step-index FMF. Taking an FMF with a numerical aperture of
0.1296 and a core diameter of 9.5 μm as an example, the nor-
malized frequency is V � 4.99 at 1550 nm. If the main com-
ponent is the first-order mode, ΔFr � 0.4042. In comparison,
ΔF r is very small for the RCF we used, which is 0.0265. In
general, ΔFr should be less than 0.1 for our method to achieve
good performance in purity recovery. Next, we discuss how
ΔF r changes when the parameters of the RCF change using
COMSOL. The cladding radius is set to 125 μm to be closer
to the usual value. The inner ring radius r1, the outer ring ra-
dius r2, and the core–cladding relative refractive index differ-
ence (Δn) are the most important parameters of the RCF. As
these parameters change, the number of modes supported by
the fiber varies. However, this is not a concern of our discussion
in this section. As the number of modes supported by the fiber
increases, if ΔFr is small for the first-order mode, it will also be
small for other HOMs. Therefore, we uniformly assume that
the main component is the first-order mode to reflect the sim-
ilarity of the RFFs. The structures that only support the fun-
damental mode are automatically eliminated in the following
discussion.

To meet the needs of high-capacity communication, RCFs
need to support more modes, so Δn is usually about 1% or
higher. Achieving Δn greater than 0.1 usually requires the in-
troduction of negative doping in the cladding due to material
limitations. However, the final core–cladding Δn is usually less

than 0.3. Therefore, we set several Δn values and discuss how
ΔFr changes when r1 and r2 change. Figures 7(a)–7(d) show
the results when Δn is set to 0.01, 0.015, 0.02, and 0.03, re-
spectively. The color of each cell in Fig. 7 represents the value of
ΔFr when the fiber parameter is located in the lower left cell
line. The value of r1 is the most important factor affectingΔF r .
When r1 is equal to 1 μm, ΔFr is often greater than 0.1,
regardless of r2 and Δn. If r1 approaches 0, the ring core fiber
degenerates to a conventional step-index FMF, and the
assumption that all RFFs are close is not applicable anymore.
However, when r1 is not smaller than 2 μm, ΔF r is often
smaller than 0.1, regardless of r2 and Δn. This shows that
our method has a wide range of applications for RCFs. The
only requirement is that the inner ring radius of the RCF is
not less than 2 μm, which corresponds to the situation of
the vast majority of the OAM fibers reported in existing liter-
ature [12,42,49–51]. For particular RCFs, we encourage
researchers to perform calculations of the OAMmode structure
first to determine the closeness of each RFF. If ΔFr is less than
0.1, our method is applicable.

3. EXPERIMENTAL VERIFICATION

A. Verification Principle of the Purity Measurement
Method
It is challenging to verify the effectiveness of our proposed
method for measuring purity. Theoretically, it requires ensuring
that each small component is accurately recovered. One simple
approach is to directly measure the power of each mode com-
ponent injected into the fiber. However, this requires a complex
spatial multiplexing system and precise alignment. Moreover,
due to the unique mode field of ring core fibers, power loss
and inter-mode coupling can make it challenging to determine
the power coupled into the fiber. As a result, the measurement
results using different methods may differ. In light of these dif-
ficulties, we propose a straightforward polarization test method

Fig. 7. Similarity of the radial field functions when fiber parameters change. The color of each cell represents the value of ΔFr when the fiber
parameter is located in the lower left cell line. (a) Δn � 0.010, (b) Δn � 0.015, (c) Δn � 0.020, and (d) Δn � 0.030.
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that uses a polarizer to confirm the correct recovery of each
mode component in one go. This approach is also applicable
to other similar mode decomposition algorithms that utilize
linear polarization light. First of all, an unknown vector
fundamental mode can be described by the Jones vector
�A0,xeiα0,x ,A0,yeiα0,y �T , where A0,x and A0,y are the amplitudes
of the electric field under the x and y polarization, respectively,
and α0,y − α0,x denotes the phase difference of the two polar-
izations [52]. Then the electric field Eψ

0 after passing through a
polarizer whose axis is at the angle ψ is given by Eq. (7a), and
the measured amplitude Aψ

0 is given by Eq. (7b):

Eψ
0 �

�
cos2ψ cos ψ sin ψ

cos ψ sin ψ sin2ψ

��
A0,xeiα0,x
A0,yeiα0,y

�

� �A0,x cos ψeiα0,x � A0,y sin ψeiα0,y �
�
cos ψ
sin ψ

�

� �Aψ
0 e

iαψ0 �
�
cos ψ
sin ψ

�
, (7a)

Aψ
0 � jA0,x cos ψ � A0,y sin ψei�α0,y−α0,x�j: (7b)

If the amplitudes A0,x and A0,y are measured under x and y
polarizations, respectively, it is only necessary to measure the
amplitude Aψ0

0 under an arbitrary polarization ψ0 for recovering
the phase difference �α0,y − α0,x� by Eq. (7b). With the phase
difference, the amplitude under other polarizations can be pre-
dicted by Eq. (7b) and compared with the amplitude actually
measured under those polarizations. The correctness of the am-
plitudes measured at each polarization is crucial for the correct
recovery of the phase difference and successful prediction of
amplitudes at new polarizations. Figure 8 is a schematic dia-
gram to illustrate the polarization test idea, where the blue bub-
bles represent the actually measured amplitudes under different
polarizations, and the rest are the predicted Jones vector and
amplitudes. Here we choose ψ0 � 45°. The amplitudes when
the axis of the polarizer is at the angles 0°, 45°, and 90° are
measured to recover the Jones vector and predict the ampli-
tudes at other polarizations. The predicted amplitudes are com-
pared with the actually measured ones to verify the correctness
of the amplitude measurement.

For an HOM group with an azimuthal order of l , the prin-
ciple is the same, although there are four degenerate modes,
which can be described by the extended Jones vector

�A�l ,xeiα�l ,x ,A−l ,xeiα−l ,x ,A�l ,yeiα�l ,y ,A−l ,yeiα−l ,y �T under the
OAM base [44,52], where A�l ,xeiα�l ,x and A−l ,xeiα−l ,x are the
complex amplitudes ofOAM�l andOAM−l under the x polari-
zation, respectively. Similarly, A�l ,yeiα�l ,y and A−l ,yeiα−l ,y are
those under the y polarization. Then the electric field of this
HOM group Eψ

�l that passes through a polarizer whose axis
is at ψ can be described as follows:

Eψ
�l �

�
cos2ψ cos ψ sin ψ

cos ψ sin ψ sin2ψ

�

×
�A�l ,xeiα�l ,x eilθ � A−l ,xeiα−l ,x e−ilθ

A�l ,yeiα�l ,y eilθ � A−l ,yeiα−l ,y e−ilθ

�

� ��A−l ,x cos ψeiα−l ,x � A−l ,y sin ψeiα−l ,y �e−ilθ

� �A�l ,x cos ψeiα�l ,x � A�l ,y sin ψeiα�l ,y �eilθ�
�
cos ψ

sin ψ

�

� �Aψ
−l e

iαψ
−l e−ilθ � Aψ

�l e
iαψ�l eilθ�

�
cos ψ

sin ψ

�
, (8a)

Aψ
−l � jA−l ,x cos ψ � A−l ,y sin ψei�α−l ,y−α−l ,x�j, (8b)

Aψ
�l � jA�l ,x cos ψ � A�l ,y sin ψei�α�l ,y−α�l ,x�j, (8c)

where eilθ and e−ilθ representOAM�l andOAM−l , and A
ψ
−l and

Aψ
�l are the measured amplitudes ofOAM−l andOAM�l at the

polarization ψ , respectively. Under the x polarization, A−l ,x and
A�l ,x can be recovered through the algorithm we proposed.
Similarly, A−l ,y and A�l ,y can be measured under the y polari-
zation. Once the Aψ0

−l and Aψ0

�l are obtained at another polari-
zation ψ0 such as 45°, the phase differences α�l ,y − α�l ,x and
α−l ,y − α−l ,x can be calculated immediately by Eqs. (8b)
and (8c), and the extended Jones vector is completely deter-
mined. Considering the effect of actual measurement errors,
it is acceptable that only one of the phase differences
α�l ,y − α�l ,x or α−l ,y − α−l ,x is calculated correctly. Because
our algorithm does also recover α�l ,x − α−l ,x and α�l ,y − α−l ,y
under the x and y polarizations, respectively, once
α�l ,y − α�l ,x is determined, α−l ,y − α−l ,x can be calculated
through simple additive operation, and vice versa. This fact en-
hances the robustness of determining the extended Jones vec-
tor. Once the extended Jones vector is accurately retrieved, we
can use it to predict the amplitudes under other polarizations
by Eqs. (8b) and (8c) and compare them with the measured
amplitudes. This method can be applied to any HOM groups
to ensure that the amplitudes of all modes are correctly recov-
ered in a single test, even if the power of some modes is
extremely low.

B. Experimental Setup and Results
Figure 9(a) illustrates the setup used to verify the purity mea-
surement method. To verify the accuracy of our algorithm, we
generate different approximately pure vector modes into the
specific RCF depicted in Fig. 1 and detect them. The overall
experimental setup consists of a Mach–Zehnder interference
system. First, a fundamental mode light at 1550 nm (or
1310 nm) from a tunable laser (Keysight 81600B, 1460–
1640 nm; or EXFO T100S-HP, 1260–1360 nm) passes
through a 5:5 optical coupler and is split into two branches.Fig. 8. Schematic diagram of the polarization test method.
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The first branch is collimated into a Gaussian reference beam
through a lens (Lens3), whose polarization can be adjusted by a
polarization controller (PC2). The second branch is also colli-
mated into a Gaussian beam through a lens (Lens1) and modu-
lated by the SLM. A polarization controller (PC1) is used to
change the polarization of the beam to match the axis of the
SLM (HOLOEYE PLUTO-2.1-TELCO-013 for 1550 nm; or
HOLOEYE PLUTO-2.1-NIRO-023 for 1310 nm), which
only responds to a linearly polarized state. Two mirrors and
a three-axis stage are used for the precise alignment of the op-
tical path. The Gaussian beam is coupled into the RCF through
an objective lens and excites the fundamental mode. By loading
a spiral phase plate with different forked gratings on the phase
plane of the SLM, the Gaussian beam is converted to pure
OAM modes with different azimuthal orders, exciting the cor-
responding modes in the RCF. A quarter-wave plate is used to
change the polarization state of OAMmodes to generate a more
complicated optical field in the RCF. The output optical field
from the RCF is collimated by a lens (Lens2), and a polarization
state is selected by a polarizer. Finally, the optical field is cap-
tured by a camera (LD-SW6401715-UC-G, 900–1700 nm).
By changing the phase plane of the SLM, a series of intensity
distributions of approximately pure modes can be obtained in
the experiment. The corresponding interference pattern can be
obtained by using the Gaussian reference beam, which inter-
feres with the near-pure OAM modes through an unpolarized
beam splitter (NPBS).

Although the verification setup may seem complex, we pro-
pose a simplified application setup in Fig. 9(b) that is fully com-
patible with the previous FMF mode field detection setup and
does not add any additional physical costs. Such a setup can be
used to characterize the performance of different kinds of OAM
fibers or devices. The core of this setup is a simple imaging
system, where the optical field emitted from the mode convert-
ers is imaged onto a CCD using a lens (Lens1). Unlike the veri-
fication setup, the Mach–Zehnder interference system (which
includes the Gaussian reference beam from Lens2, the polari-
zation controller used to change its polarization state, and the
NPBS used to combine the two branches) and the polarizer are
optional for researchers, depending on how they determine
the main components of the output beam and the actual

polarization of the beam. They are not necessary if the main
component can be determined based on the pattern shape
and the beam is linearly polarized. Compared to any other ex-
perimental setups that use SLMs or reference beams, this device
does not require complex optical alignment or interference sta-
bility. Mode purity measurement can be achieved simply by
imaging the output optical field from the fiber, capturing an
image and calculating it. This simplicity indicates its wide
applicability, allowing for easy characterization of mode perfor-
mance in RCFs and RCF-based passive and active devices.

Before using our method, the first step is to obtain infor-
mation about the main component. If the main component
is a single OAM mode, the interference optical path should be
built to observe the number of vortex lobes or forked wires to
determine the azimuthal order. If the main component is a
superposition of two OAM modes (for example, LP modes),
the azimuthal order is determined based on the number
of lobes.

We present the detailed experimental procedure of our algo-
rithm using actual images captured in the experiment, as shown
in Fig. 10(a). The first step is to determine the position of the
optical axis on the camera and crop the image. Themode field of
the RCFnaturally resembles a doughnut shape, and the intensity
distribution does not exceed this ring range, although it may be
uneven in the angular direction when different modes are super-
imposed. Therefore, we select an image that is closer to the
circular shape in the angular direction, perform image segmen-
tation, and draw a circle to determine the optical axis, as depicted
in Fig. 10(b). The cropped image is presented in Fig. 10(c).

Next, we select a sampling radius with high intensity and
SNR but not overexposed. If the intensity is too low or over-
exposed, it will affect the accurate extraction of Fourier coef-
ficients. The red circle in Fig. 10(c) denotes the selected
sampling radius. We then perform FFT to the intensity of this
sampling radius to obtain the Fourier coefficients, as demon-
strated in Fig. 10(d). With prior knowledge of the main com-
ponent, we solve the equation group Eq. (4) using a least
squares algorithm. All parts of the algorithm itself can be
automated by a computer. As a result, the recovered amplitude
spectrum is illustrated in Fig. 10(e). The algorithms were
implemented using MATLAB and performed on a computer

Fig. 9. Experimental setup. (a) Algorithm verification device. (b) Mode purity testing device. SMF, single-mode fiber; OC, optical coupler; PC,
polarization controller; SLM, spatial light modulator; QWP, quarter-wave plate; RCF, ring core fiber; Pol., polarizer; OL, objective; NPBS,
unpolarized beam splitter.
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with CPU R7-5800H. The time required to complete all cal-
culations for a single experimental image is approximately
0.0267 s.

Detecting the impact of various experimental factors such as
image noise and optical axis selection on the accuracy of the
algorithm is a concern. We do this by constructing the exper-
imental OAM mode base and reconstruct the intensity distri-
bution by the recovered amplitudes and phases of each OAM
mode. We can then calculate the correlation between the mea-
sured and reconstructed images to judge whether the algo-
rithm’s accuracy is affected in actual situations. The OAM
mode base construction requires only the RFFs, and a normal-
ized radial sampling sequence can be extracted from any of the
pictures to estimate them. The radial sampling sequence can
be seen as a superposition of the RFFs which are quite similar,
so it is close to any individual RFF. Figure 11(a) shows the
preset images, reconstructed images, and their correlations.
Figure 11(b) displays the recovered amplitude spectra. The true
image is the experimental one shown in Fig. 11(c). We can see
that if the optical axis is accurately selected, the measured image
is very similar to the reconstructed image, and the correlation
coefficient is as high as 0.97958, indicating that the algorithm
can perform well in actual scenarios. The algorithm demon-
strates excellent noise robustness as adding white Gaussian
noise (to simulate the unavoidable camera thermal noise and
environmental noise) does not cause significant changes in the
amplitude spectrum, although it reduces the correlation co-
efficient. However, if the optical axis is selected incorrectly
and has a 7.5% offset in the x or y direction, the image corre-
lation coefficient and algorithm accuracy decrease significantly.
Therefore, the accurate determination of the optical axis is
important, and one effective approach is to utilize the image
segmentation method depicted in Fig. 10(b). It should be
noted that high correlation is necessary but insufficient to

ensure the algorithm’s accuracy, as discussed in Section 2.A.
Even if the correlation is above 0.95, the correct solution
may not be obtained. In the next section, we discuss how
we assess the algorithm’s accuracy.

To verify the accuracy of our algorithm, we employed the
polarization test method by generating different vector optical
fields in the experimental setup depicted in Fig. 9(a). Our re-
sults are presented in Figs. 12 and 13. These results are ob-
tained by coupling the fourth-order mode group into the
RCF at the wavelength of 1310 nm. In the first optical field of
Fig. 12, a near-pureOAM�4 was observed at all polarizations as

Fig. 10. Schematic diagram of the process of the proposed purity measurement method. (a) Flow chart of the proposed purity measurement
method. (b) Determination of the optical axis in the camera. (c) The cropped image. The red circle represents the sampling radius. (d) The intensity
of the azimuthal sampling sequence, the real part and imaginary part of its Fourier spectrum. (e) Recovered amplitude spectrum.

Fig. 11. Demonstration of how different experimental factors affect
the algorithm’s precision. (a) Preset images, reconstructed images, and
their correlations under different conditions. (b) Recovered amplitude
spectrum under different conditions. (c) Recovered phase spectrum
under different conditions.
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all the interferograms under these polarizations exhibit the
fourth-order fork wire. Each subgraph in the figure includes
the measured image, reconstructed image, amplitude spectrum,
and measured mode group purity (P).

From the results in Figs. 12(a1)–12(a3), we recovered the
Jones vector or expanded Jones vector of each mode group
and determined the vector optical field completely. Then we
can predict the amplitude spectrum at new polarizations.

The comparison of measured and predicted amplitude spectra
is shown in Figs. 12(b1)–12(b3). The error of amplitudes (ϵA)
is calculated by Eq. (5) and labeled in the figures. We can see
that the amplitudes at new polarizations are correctly predicted
with an accuracy of 0.05, proving that our algorithm can re-
cover the mode component correctly in each polarization state,
even when the mode group purity is as low as 85.46% in
Fig. 12(b2). The second vector optical field in Fig. 13 appears

Fig. 12. Experimental results of the optical field which appears as a single near-pure OAMmode at different polarizations. (a1)–(a3) The captured
images, reconstructed images, measured amplitude spectrum, and the mode purity (P). (b1)–(b3) The captured images, reconstructed images,
measured amplitude spectrum, predicted amplitude spectrum, the mode purity (P), and the error of amplitudes (ϵA).

Fig. 13. Experimental results of the optical field which appears as the superposition of two fourth-order OAM modes at different polarizations.
(a1)–(a3) The captured images, reconstructed images, measured amplitude spectrum, and the mode purity (P). (b1)–(b3) The captured images,
reconstructed images, measured amplitude spectrum, predicted amplitude spectrum, the mode purity (P), and the error of amplitudes (ϵA).

Research Article Vol. 11, No. 9 / September 2023 / Photonics Research 1603



as a superposition ofOAM�4 at all polarizations. Similar to the
first optical field, the amplitude spectrum was also correctly
predicted at each polarization, although the maximum value
of ϵA increases to about 0.1458. The increased value of ϵA sug-
gests that our algorithm performs better when a single OAM
mode occupies most of the power, as explained in Section 2.B.
However, the error of less than 0.15 is sufficient for the vast
majority of cases, such as the mode purity measurement of
all-fiber mode conversion devices [21,22] or the characteriza-
tion of inter-mode cross talk. These experimental results pro-
vide strong evidence for the accuracy and effectiveness of our
algorithm.

4. CONCLUSION

In this paper, we present a novel and precise method for meas-
uring the mode purity of RCFs. By leveraging prior knowledge
of the main component, our method enables accurate recovery
of the purity without requiring complex experimental setups or
devices. We demonstrate the effectiveness of our method
through simulations and experiments and validate its accuracy
using a polarization test. All theoretical and experimental results
demonstrate the effectiveness and accuracy of our proposed
method. We believe that our method will greatly enhance the
characterization of RCFs and RCF-based fiber devices and
facilitate the resolution of complex mode coupling in RCFs,
thereby promoting their use in OAM communications and
other applications.
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